49 research outputs found

    Limits of feedback control in bacterial chemotaxis

    Full text link
    Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper coupling between sensors, which gather information during motion, and actuators, which control behavior. Because reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime different from the resting state. How then can organisms maintain proper information transfer through the pathway while navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant. While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters affect chemotactic performance, especially when considering that the swimming behavior of the cell determines the input signal. Using analytical models and simulations that incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation we identify an operational regime of the pathway that maximizes drift velocity for various environments and sensor adaptation rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal operational regime in all environments, suggesting that diversity could be beneficial.Comment: Corrected one typo. First two authors contributed equally. Notably, there were various typos in the values of the parameters in the model of motor adaptation. The results remain unchange

    Adaptation dynamics in densely clustered chemoreceptors

    Get PDF
    In many sensory systems, transmembrane receptors are spatially organized in large clusters. Such arrangement may facilitate signal amplification and the integration of multiple stimuli. However, this organization likely also affects the kinetics of signaling since the cytoplasmic enzymes that modulate the activity of the receptors must localize to the cluster prior to receptor modification. Here we examine how these spatial considerations shape signaling dynamics at rest and in response to stimuli. As a model, we use the chemotaxis pathway of Escherichia coli, a canonical system for the study of how organisms sense, respond, and adapt to environmental stimuli. In bacterial chemotaxis, adaptation is mediated by two enzymes that localize to the clustered receptors and modulate their activity through methylation-demethylation. Using a novel stochastic simulation, we show that distributive receptor methylation is necessary for successful adaptation to stimulus and also leads to large fluctuations in receptor activity in the steady state. These fluctuations arise from noise in the number of localized enzymes combined with saturated modification kinetics between localized enzymes and receptor substrate. An analytical model explains how saturated enzyme kinetics and large fluctuations can coexist with an adapted state robust to variation in the expression level of the pathway constituents, a key requirement to ensure the functionality of individual cells within a population. This contrasts with the well-mixed covalent modification system studied by Goldbeter and Koshland in which mean activity becomes ultrasensitive to protein abundances when the enzymes operate at saturation. Large fluctuations in receptor activity have been quantified experimentally. Here we clarify their mechanistic relationship with well-studied aspects of the chemotaxis system, precise adaptation and functional robustness.Comment: Pontius W, Sneddon MW, Emonet T (2013) Adaptation Dynamics in Densely Clustered Chemoreceptors. PLoS Comput Biol 9(9): e1003230. doi:10.1371/journal.pcbi.100323

    Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response

    Get PDF
    The sensitivity of T cells to interleukin-2 (IL-2) can vary by three orders of magnitude and is determined by the surface densities of the IL-2 receptor α subunits.Regulatory T cells inflict a double hit on effector T cells by lowering the bulk IL-2 concentration as well as the sensitivity of effector T cells to this crucial cytokine.This double hit deprives weakly activated effector T cells of pSTAT5 survival signals while having only minimal effects on strongly activated effector cells that express increased levels of the IL-2 receptor.Short-term signaling differences lead to a differential functional in terms of proliferation and cell division: regulatory T cell specifically suppress weakly activated effector T cells even at large numbers; small numbers of strongly activated effector T cells overcome the suppression

    Minimally invasive determination of mRNA concentration in single living bacteria

    Get PDF
    Fluorescence correlation spectroscopy (FCS) has permitted the characterization of high concentrations of noncoding RNAs in a single living bacterium. Here, we extend the use of FCS to low concentrations of coding RNAs in single living cells. We genetically fuse a red fluorescent protein (RFP) gene and two binding sites for an RNA-binding protein, whose translated product is the RFP protein alone. Using this construct, we determine in single cells both the absolute [mRNA] concentration and the associated [RFP] expressed from an inducible plasmid. We find that the FCS method allows us to reliably monitor in real-time [mRNA] down to ∼40 nM (i.e. approximately two transcripts per volume of detection). To validate these measurements, we show that [mRNA] is proportional to the associated expression of the RFP protein. This FCS-based technique establishes a framework for minimally invasive measurements of mRNA concentration in individual living bacteria

    Vignette detection and reconstruction of composed ornaments with a strengthened autoencoder

    No full text
    A strengthened autoencoder formed by placing an object detector upstream of a decoder is here developed in the context of the model-helped human analysis of composed ornaments from a dictionary of vignettes. The detection part is in charge to detect regions of interest containing some vignette features, and the decoding part to ensure vignette reconstruction with a relative quality depending on feature match. Images of ornaments without typographical composition are generated in order to properly assess the performance of each of the two parts

    Non-Genetic Diversity in Chemosensing and Chemotactic Behavior

    No full text
    Non-genetic phenotypic diversity plays a significant role in the chemotactic behavior of bacteria, influencing how populations sense and respond to chemical stimuli. First, we review the molecular mechanisms that generate phenotypic diversity in bacterial chemotaxis. Next, we discuss the functional consequences of phenotypic diversity for the chemosensing and chemotactic performance of single cells and populations. Finally, we discuss mechanisms that modulate the amount of phenotypic diversity in chemosensory parameters in response to changes in the environment

    E. coli chemotaxis is information-limited

    Full text link
    Organisms must acquire and use environmental information to guide their behaviors. However, it is unclear whether and how information quantitatively limits behavioral performance. Here, we relate information to behavioral performance in Escherichia coli chemotaxis. First, we derive a theoretical limit for the maximum achievable gradient-climbing speed given a cell's information acquisition rate. Next, we measure cells' gradient-climbing speeds and the rate of information acquisition by the chemotaxis pathway. We find that E. coli make behavioral decisions with much less than the 1 bit required to determine whether they are swimming up-gradient. However, they use this information efficiently, performing near the theoretical limit. Thus, information can limit organisms' performance, and sensory-motor pathways may have evolved to efficiently use information from the environment.Comment: 17 pages of main text, 3 main text figures, 66 pages of supplementary text, 10 supplementary figure
    corecore